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The U(1)s problem

! Pseudoscalar mesons
- The n’ meson is (almost)

a ﬂavour SInglet Meson Quark content Mass [MeV]
combination of light £ e a0 10035
[VEI S n0 el 134.9766(6)
- No parity partner in 5 e & 0V
Kb 5 493.677(16)
nature Kg Zi 497.614(24)
K d 497.614(24)
t=> (ij(:::-)v K U(l)A broken K= za 493.677(16)
0 ( )V n coséng +sinéng 547.862(18)
ne
- The n’is too heavy to be 7 I
the ninth pseudo
Nambu-Goldstone boson: g o G0 +u=253
mpr < ﬁmn [Weinberg 1975] ) ‘{E . 6~-11.4°
dd + ul+ ss

no = Vel
: Why is the n” much heavier than other
pseudo Nambu-Goldstone bosons?



Some definitions
Yang-Mills theory Euclidean action admits a 6-term

1
o 4 a a &
S[A] = J d%x 707 Fa,00F%, 00
where the

1
q(x) = meuvpa’:zv(x)l:ga(x)

- Locally, is the divergence of a current g(x) = o,Ku(x)

- Its spacetime integral Q = f d*xq(x) € Z on classical
configurations of finite Euclidean action

- U(1)a is broken by an anomaly « 2Nfq(x)

The is the two-point function of g(x)
(at zero momentum)

Xt = f d*x (q(x)q(0))



The Witten-Veneziano mechanism

A mechanism to solve the U(1)a problem based on the
vanishing of the anomaly in the large N limit
[Witten 1979; Veneziano 1979]

In the N — oo limit U(1), is restored. The n/ is a
Nambu-Goldstone boson

Assuming leading order dependence on 6 in Yang-Mills
theory, x{™ # 0 and O(1) in large N

Dynamical quarks are an (’)(Nic) effect

But no 6 dependence in QCD with massless quarks
= Xt=0

The n’ gets a mass Mrz;' = O(Nic) given by the



The dilute instanton gas

A solution of the U(1)a problem proposed by 't Hooft using
instantons: approximation ['t Hooft 1976]

Semiclassical approximation
Free energy dependence on 6

F(6)=—1InZ(0) = —VA(cos6—1)

Arbitrary normalization A = no prediction for XIM

1 1 d?F
YM _ ~/02\ = _
X v<o ) V d62 b

No IR bound on instantons size
Expected to be valid at high temperature



Higher moments
We need to study of the
of the topological charge Q in Yang-Mills theory
- Higher cumulants are obtained deriving F(8)

2n

d
(Q2M)®°" = ()™ —-F(6)
do? G

- We define the ratio between the 4t" and the 2nd

cumulant
o (08" _{0%)-3(0%)
-~ {@?) (0?)




Higher moments

We need to study of the
of the topological charge Q in Yang-Mills theory

- Higher cumulants are obtained deriving F(8)
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cumulant o ,
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Lattice regularization

- Euclidean YM theory is discretized on a four-dimensional
lattice with lattice spacing a. The lattice action

» reduce to the action in the continuum for a — 0
» is gauge invariant at finite lattice spacing

- The gauge field on the lattice is defined on between
lattice sites: Uy(x) € SU(3)

- The field strength tensor is defined with

- Wilson plaquette action

2N 1
U g—zczp:(l T tr{Up + U,t})




Topological charge on the lattice
Naive discretization of the topological charge density

1
qx) = meuvpaf:zv(x)’:go(x)

- Fﬁv(x) given in terms of plaquettes (clover definition)

v

1
a _ _pa
Fw(x) = 4P

with P9(U) projecting over su(3) Lie algebra



Topological charge on the lattice
Naive discretization of the topological charge density

1
q(x) = meuvpof:gv(x)’:go(x)

- Fﬁv(x) given in terms of plaquettes (clover definition)
- Two-point function at same point (g(x)g(x)) has contact
terms = additive renormalization
Solutions:

- Fermionic definition, using a Dirac operator satisfying
Ginsparg-Wilson, as Neuberger-Dirac operator Dy

il
q(x) = 5— trysDn(x, x)
2a

Index theorem: Q(x) =>.q(x) = %try_r,DN(x, X)=n_—n4
[Giusti, Rossi, Testa, Veneziano 2002; Giusti, Rossi, Testa 2004; Lischer 2004]
= Olfoos



The Yang-Mills gradient flow

The is the solution of the initial value problem
[Lischer 2010]

Viu(t, x) = —g?{auxSwIV(DI}Vult,x)  Vu(0,x) = Uu(x)

- Vu(0, x): gauge field configurations from Monte-Carlo
J evolving the ‘flow-time’ t with gradient flow
Vu(t, x): configurations smoothed within a radius +8t
- We can use a naive discretization of the topological
charge density in the continuum, applied to t > 0
configurations [Luscher, Weisz 2011]

1
i a a
q(t,x) = 642 EuvpoFuV(t,X)Fpa(t,X)

- Numerical integration of gradient flow is less expensive
than constructing the Neuberger-Dirac operator



Runge-Kutta integrator

To numerically solve the gradient flow equation, we
implemented a fourth-order

104 | I I euler :
I i j

method: SU(3) Lie group 1 F-F ckan

structure is exactly Lo,

preserved S0t R

Very small systematic S 5 R

errors from numerical i ;i

integration, negligible 102t Zb

with respect to statistical .

errors 108

. .
1072 107t




Topological charge distribution
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Topological charge distribution
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Topological charge distribution
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Lattices details

run B ¢ alfm]  L[fm] N conf

A1 596 10 0.102 1.0 36000
By 596 12 0.102 1.2 144000
Ci 596 13 0.102 1.3 280000
D 5.96 14 0.102 1.4 505000
Ey 596 15 0.102 1.5 880000
F1 596 16 0.102 1.6 1500000
By 596 12 0.102 1.2 144000
B, 6.05 14 0.088 1.2 144000
Bz 6.13 16 0.077 1.2 144000
B4 6.21 18 0.068 1.2 144000




( ) Results
Thermodynamic limit - R

0.5

- Finite volume effects on R

N | | are compatible with
statistical errors at
1 v=L4=(1.2fm)*
- . e ] | - Statistical error on R is
LI T o)

0.1f




( ) Results
Thermodynamic limit - x ™

-5
8.0 x10 i

- Finite volume effects on R

781 (] 1 are compatible with

statistical errors at

1 v=L4=(1.2fm)*

- Statistical error on R is
o(v)

- The topological

ol 4 {  susceptibility x™ shows

finite volume effects at
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( ) Results
Continuum limit - R

10 ‘ ‘ | ‘ ‘ ‘ - Statistical error on R is
o)

1 - Continuum limit done at
fixed volume (1.2 fm)*

- Continuum limit value
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R =0.233(45)

- Not compatible with dilute
‘ ‘ — " \ instanton gas prediction
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( ) Results
Continuum limit - ™

GleY , ‘ , , , - Continuum limit value

1 toxy" =6.47(7) x 10~*

6.6 N

65f 1 - Result corrected against
- | finite volume effects

1 tox;" =6.54(8) x 10~*

(3 4

I rox;™ = 0.0526(28)
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a? [fm?] Xt o (185(5)M€V)



Comparison with other results

Our (preliminary) results:
R =0.233(45)
raxi™ = 0.0526(28), x;" = (185(5) MeV)*
Results from previos lattice simulations
using Yang-Mills gradient flow:
- réx™ =0.061(6), x/™ = (192(7) MeV)* (Luscher, Palombi 2010]
using Neuberger-Dirac operator:

- réx™ =0.059(3), x/™ = (191(5) MeV)*
[Del Debbio, Giusti, Pica 2005]

-R= 0.30(11) [Giusti, Petrarca, Taglienti 20071



Conclusions

The Witten-Veneziano mechanism links the n’ mass with the
topological charge distribution in SU(3) YM theory

- We studied the topological charge distribution with
unprecedented precision

- We implemented a new fourth-order integration method
for the YM gradient flow

- First result of R with systematic and statistical errors
under control: R =0.233(45)

» In agreement with Witten-Veneziano: R = 0O %)

» Dilute instanton gas prediction R=1 is inconsistent with
this result

- Topological susceptibility x;™ measured with

unprecedented precision: t3x; = 6.53(8) x 10~*

» In agreement with previous results
» Compatible with n’ experimental mass as predicted by the
Witten-Veneziano mechanism



Thanks
for your attention!
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Runge-Kutta-Munthe-Kaas method

The YM gradient flow is the solution of the ordinary
differential equation

V(t) = Z[V(DIV(D)

The fourth order Runge-Kutta-Munthe-Kaas method is
[Munthe-Kaas 1995; Munthe-Kaas 1998; Munthe-Kaas 1999]

W, = exp{ 1Zl}V(t)

1
Ws = exp{ —Zy+ —[Zl,Zz]}V(t)
W4 =exp{Z3}V(t),
1 1 1 1 1
V(t+ a?e) = exp{ —Z1 + 322 + 323 + 6Z4 —2[21,24]}V(t).

where Z; = Z[ W]



Reference flow-time
The to is defined by

t2(E(t))| s, = 0-3

- Easy to measure
with great statistical 0sr|
accuracy

- Our result

\/8—t . 0.95 B
- ?—0.9437) & | ,
0

- using Fx measured
in quenched QCD aeplh
for scale setting

I L L L L L
0.000 0.002 0.004 0.006 0.008 0.010
2
a

to =0.0290(16)fm?2 %



Autocorrelation

Integrated autocorrelation time Tjyt for various observable
versus the lattice spacing a
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( ) Results
Continuum limit - rgx™

x1072
T

| - Continuum limit value

54l 1 4 YM
= }’\&—(—\\\ rax;™ =0.0520(28)
Esol - Result corrected against

a8l finite volume effects
e | 4. YM _
- | roXe = 0.0526(28)
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